DNA structural barcode copying and random access


No Thumbnail Available
Type
Article
Change log
Authors
Bošković, Filip 
Abstract

Digitally encoded DNA nanostructures built via DNA self-assembly have established applications in multiplexed biosensing and storing digital information. However, a key challenge is that DNA structures are not easily copied which is of vital importance for their large-scale production and access to desired molecules by target-specific amplification. Here, we build DNA structural barcodes and demonstrate the copying and random access of the barcodes from a library of molecules using a modified polymerase chain reaction (PCR). The structural barcodes were assembled by annealing a single-stranded DNA scaffold with complementary short oligonucleotides containing protrusions as digital bits at defined locations. DNA nicks in these structures are ligated to facilitate barcode copying using PCR. To randomly access a target from a library of barcodes, we employ a non-complementary end in the DNA construct that serves as a barcode-specific primer-template. Readout of the DNA structural barcodes was performed with nanopore measurements. Our study provides a roadmap for the convenient production of large quantities of self-assembled DNA nanostructures. In addition, this strategy offers access to specific targets, a crucial capability for multiplexed single-molecule sensing and DNA data storage.

Description
Keywords
deoxyribonucleic acid data storage, deoxyribonucleic acid nanostructures, deoxyribonucleic acid nanotechnology, nanopores, single-molecule
Journal Title
Small Structures
Conference Name
Journal ISSN
2688-4062
2688-4062
Volume Title
2
Publisher
Wiley
Rights
All rights reserved
Sponsorship
European Research Council (647144)
ERC
Relationships
Is previous version of: