Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them.


Type
Article
Change log
Authors
Ziegler, Anna B 
Abstract

Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.

Description
Keywords
actin, dendrite arborization (da) neurons, neuronal dendrites, time-lapse imaging, Actins, Animals, Cell Differentiation, Dendrites, Drosophila
Journal Title
Cells
Conference Name
Journal ISSN
2073-4409
2073-4409
Volume Title
10
Publisher
MDPI AG
Sponsorship
DFG (Teilprojekt SPP1464 to G.T. and DFG project Nr. ZI-1690/2-1 to A.B.Z.)