Repository logo
 

Dielectric response with short-ranged electrostatics.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Abstract

The dielectric nature of polar liquids underpins much of their ability to act as useful solvents, but its description is complicated by the long-ranged nature of dipolar interactions. This is particularly pronounced under the periodic boundary conditions commonly used in molecular simulations. In this article, the dielectric properties of a water model whose intermolecular electrostatic interactions are entirely short-ranged are investigated. This is done within the framework of local molecular-field theory (LMFT), which provides a well-controlled mean-field treatment of long-ranged electrostatics. This short-ranged model gives a remarkably good performance on a number of counts, and its apparent shortcomings are readily accounted for. These results not only lend support to LMFT as an approach for understanding solvation behavior, but also are relevant to those developing interaction potentials based on local descriptions of liquid structure.

Description

Keywords

confined fluids, dielectric response, electrostatic interactions, liquid water, local molecular field theory

Journal Title

Proc Natl Acad Sci U S A

Conference Name

Journal ISSN

0027-8424
1091-6490

Volume Title

117

Publisher

Proceedings of the National Academy of Sciences

Rights

All rights reserved
Sponsorship
Royal Commission for the Exhibition of 1851
Relationships
Is supplemented by: