Repository logo
 

Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Sohn, Jung Inn 
Hong, Woong-Ki 
Lee, Sunghoon 
Lee, Sanghyo 
Ku, JiYeon 

Abstract

ZnO is a wide band-gap semiconductor with piezoelectric properties suitable for opto-electronics, sensors, and as an electrode material. Controlling the shape and crystallography of any semiconducting nanomaterial is a key step towards extending their use in applications. Whilst anisotropic ZnO wires have been routinely fabricated, precise control over the specific surface facets and tailoring of polar and non-polar growth directions still requires significant refinement. Manipulating the surface energy of crystal facets is a generic approach for the rational design and growth of one-dimensional (1D) building blocks. Although the surface energy is one basic factor for governing crystal nucleation and growth of anisotropic 1D structures, structural control based on surface energy minimization has not been yet demonstrated. Here, we report an electronic configuration scheme to rationally modulate surface electrostatic energies for crystallographic-selective growth of ZnO wires. The facets and orientations of ZnO wires are transformed between hexagonal and rectangular/diamond cross-sections with polar and non-polar growth directions, exhibiting different optical and piezoelectrical properties. Our novel synthetic route for ZnO wire fabrication provides new opportunities for future opto-electronics, piezoelectronics, and electronics, with new topological properties.

Description

Keywords

40 Engineering, 3403 Macromolecular and Materials Chemistry, 4016 Materials Engineering, 34 Chemical Sciences, 7 Affordable and Clean Energy

Journal Title

Sci Rep

Conference Name

Journal ISSN

2045-2322
2045-2322

Volume Title

4

Publisher

Springer Science and Business Media LLC