Repository logo
 

Mechanism and Regulation of P Element Transposition

Published version
Peer-reviewed

Change log

Authors

Ghanim, George E 
Rio, Donald C 
Karam Teixeira, Felipe  ORCID logo  https://orcid.org/0000-0001-7651-1657

Abstract

P elements were first discovered in the fruit fly Drosophila melanogaster as the causative agents of a syndrome of aberrant genetic traits called hybrid dysgenesis. This occurs when P element-carrying -males mate with females that lack P elements and results in progeny displaying sterility, mutations and chromosomal rearrangements. Since then numerous genetic, developmental, biochemical and structural studies have culminated in a deep understanding of P element transposition: from the cellular regulation and repression of transposition to the mechanistic details of the transposase nucleoprotein complex. Recent studies have revealed how piwi-interacting small RNA pathways can act to control splicing of the P element pre-mRNA to modulate transposase production in the germline. A recent cryo-electron microscopy structure of the P element transpososome reveals an unusual DNA architecture at the transposon termini and shows that the bound GTP cofactor functions to position the transposon ends within the transposase active site. Genome sequencing efforts have shown that there are P element transposase-homologous genes (called THAP9) in other animal genomes, including humans). This review highlights recent and previous studies, which together have led to new insights, and surveys our current understanding of the biology, biochemistry, mechanism and regulation of P element transposition.

Description

Keywords

Journal Title

Open Biology

Conference Name

Journal ISSN

2046-2441
2046-2441

Volume Title

10

Publisher

The Royal Society
Sponsorship
Wellcome Trust (206257/Z/17/Z)
Human Frontier Science Program (HFSP) (CDA00032/2018-C)
Human Frontier Science Program (CDA-00032/2018)