We will be undertaking essential maintenance work on Apollo's infrastructure on Thursday 14 August and Friday 15 August, therefore expect intermittent access to Apollo's content and search interface during that time. Please also note that Apollo's "Request a copy" service will be temporarily disabled while we undertake this work.
Repository logo
 

First-order synchronization transition in a large population of strongly coupled relaxation oscillators.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Onset and loss of synchronization in coupled oscillators are of fundamental importance in understanding emergent behavior in natural and man-made systems, which range from neural networks to power grids. We report on experiments with hundreds of strongly coupled photochemical relaxation oscillators that exhibit a discontinuous synchronization transition with hysteresis, as opposed to the paradigmatic continuous transition expected from the widely used weak coupling theory. The resulting first-order transition is robust with respect to changes in network connectivity and natural frequency distribution. This allows us to identify the relaxation character of the oscillators as the essential parameter that determines the nature of the synchronization transition. We further support this hypothesis by revealing the mechanism of the transition, which cannot be accounted for by standard phase reduction techniques.

Description

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

6

Publisher

American Association for the Advancement of Science (AAAS)

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution-NonCommercial 4.0 International