Automatic detection and correction of context-dependent dt-mistakes using neural networks
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
We introduce a novel approach to correcting context-dependent dt-mistakes, one of the most frequent spelling errors in the Dutch language. We show that by using a neural network to estimate the probability distribution of a verb's suffix conditioned jointly on its stem and context, we obtain large improvements over state-of-the-art spell checkers on three different benchmarking datasets, achieving a perfect score on a verb spelling test from \emph{de Standaard}, a Flemish newspaper. The method is unsupervised and only relies on basic preprocessing tools to tokenize the text and identify verbs, which enables training on millions of sentences. Furthermore, we propose a method to determine which words in a sentence cause the system to make corrections, which is valuable for providing feedback to the user.