Repository logo
 

Electro-mechano responsive elastomers with self-tunable conductivity and stiffness.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Materials with programmable conductivity and stiffness offer new design opportunities for next-generation engineered systems in soft robotics and electronic devices. However, existing approaches fail to harness variable electrical and mechanical properties synergistically and lack the ability to self-respond to environmental changes. We report an electro-mechano responsive Field's metal hybrid elastomer exhibiting variable and tunable conductivity, strain sensitivity, and stiffness. By synergistically harnessing these properties, we demonstrate two applications with over an order of magnitude performance improvement compared to state-of-the-art, including a self-triggered multiaxis compliance compensator for robotic manipulators, and a resettable, highly compact, and fast current-limiting fuse with an adjustable fusing current. We envisage that the extraordinary electromechanical properties of our hybrid elastomer will bring substantial advancements in resilient robotic systems, intelligent instruments, and flexible electronics.

Description

Journal Title

Sci Adv

Conference Name

Journal ISSN

2375-2548
2375-2548

Volume Title

9

Publisher

American Association for the Advancement of Science (AAAS)

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
Engineering and Physical Sciences Research Council (EP/N018524/1, EP/W00206X/1)