Spatiotemporal Dynamics and Control of Strong Coupling in Plasmonic Nanocavities

Change log

© 2017 American Chemical Society. In the light-matter strong coupling regime, the excited state of quantum emitters is inextricably linked to a photonic mode, leading to hybrid states that are part light and part matter. Recently, there has been a huge effort to realize strong coupling with nanoplasmonics, since it provides a versatile environment to study and control molecules in ambient conditions. Among the most promising designs are plasmonic nanocavities that confine light to unprecedentedly small volumes. Such nanocavities, though, support multiple types of modes, with different field profiles and radiative decay rates (bright and dark modes). Here, we show theoretically that the different nature of these modes leads to mode beating within the nanocavity and the Rabi oscillations, which alters the spatiotemporal dynamics of the hybrid system. By specifically designing the illumination setup, we decompose and control the dark and bright plasmon mode excitation and therefore their coupling with quantum emitters. Hence, this work opens new routes for dynam ically dressing emitters, to tailor their hybrid states with external radiation.

strong coupling, nanoplasmonics, plasmonic nanocavities, dark modes, spatiotemporal dynamics, parity symmetry
Journal Title
ACS Photonics
Conference Name
Journal ISSN
Volume Title
American Chemical Society (ACS)
Engineering and Physical Sciences Research Council (EP/L027151/1)
European Research Council (320503)
Engineering and Physical Sciences Research Council (EP/G060649/1)