Repository logo
 

Error-correction on non-standard communication channels


Type

Thesis

Change log

Authors

Ratzer, Edward Alexander 

Abstract

Many communication systems are poorly modelled by the standard channels assumed in the information theory literature, such as the binary symmetric channel or the additive white Gaussian noise channel. Real systems suffer from additional problems including time-varying noise, cross-talk, synchronization errors and latency constraints. In this thesis, low-density parity-check codes and codes related to them are applied to non-standard channels. First, we look at time-varying noise modelled by a Markov channel. A low-density parity-check code decoder is modified to give an improvement of over 1dB. Secondly, novel codes based on low-density parity-check codes are introduced which produce transmissions with Pr(bit = 1) ≠ Pr(bit = 0). These non-linear codes are shown to be good candidates for multi-user channels with crosstalk, such as optical channels. Thirdly, a channel with synchronization errors is modelled by random uncorrelated insertion or deletion events at unknown positions. Marker codes formed from low-density parity-check codewords with regular markers inserted within them are studied. It is shown that a marker code with iterative decoding has performance close to the bounds on the channel capacity, significantly outperforming other known codes. Finally, coding for a system with latency constraints is studied. For example, if a telemetry system involves a slow channel some error correction is often needed quickly whilst the code should be able to correct remaining errors later. A new code is formed from the intersection of a convolutional code with a high rate low-density parity-check code. The convolutional code has good early decoding performance and the high rate low-density parity-check code efficiently cleans up remaining errors after receiving the entire block. Simulations of the block code show a gain of 1.5dB over a standard NASA code.

Description

Date

Advisors

Keywords

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge

Collections