Identifying Muon Neutrino Charged-Current Interactions in the MicroBooNE Detector
Repository URI
Repository DOI
Change log
Authors
Abstract
The MicroBooNE experiment is a short-baseline neutrino experiment at the Fermi National Accelerator Laboratory (FNAL) in the US, receiving a highly pure muon neutrino beam from the Booster Neutrino Beam (BNB) and taking data since October 2015. The main physics goal of MicroBooNE is to clarify the nature of the low-energy excess of electron-like events observed by the MiniBooNE Cherenkov detector, which due to its detector technology is unable to resolve whether the observed excess shower-like events are due to electrons or photons. Instead, MicrooBooNE employs cutting-edge liquid argon time projection chamber (LArTPC) technology, which offers excellent spatial and calorimetric resolution, which makes it possible to reconstruct complex neutrino interactions and to efficiently distinguish different final state particle types. This thesis presents a fully-automated event selection of interactions of the types