Repository logo
 

Dopamine, Prediction Error and Beyond

Published version
Peer-reviewed

Change log

Authors

Diederen, Kelly M. J.  ORCID logo  https://orcid.org/0000-0002-9619-6583
Fletcher, Paul C. 

Abstract

A large body of work has linked dopaminergic signaling to learning and reward processing. It stresses the role of dopamine in reward prediction error signaling, a key neural signal that allows us to learn from past experiences, and that facilitates optimal choice behavior. Latterly, it has become clear that dopamine does not merely code prediction error size but also signals the difference between the expected value of rewards, and the value of rewards actually received, which is obtained through the integration of reward attributes such as the type, amount, probability and delay. More recent work has posited a role of dopamine in learning beyond rewards. These theories suggest that dopamine codes absolute or unsigned prediction errors, playing a key role in how the brain models associative regularities within its environment, while incorporating critical information about the reliability of those regularities. Work is emerging supporting this perspective and, it has inspired theoretical models of how certain forms of mental pathology may emerge in relation to dopamine function. Such pathology is frequently related to disturbed inferences leading to altered internal models of the environment. Thus, it is critical to understand the role of dopamine in error-related learning and inference.

Description

Keywords

Reviews, dopamine, prediction errors, brain, psychiatry, learning

Journal Title

The Neuroscientist

Conference Name

Journal ISSN

1073-8584
1089-4098

Volume Title

27

Publisher

SAGE Publications