Repository logo
 

Predictive control of a Boeing 747 aircraft using an FPGA


Loading...
Thumbnail Image

Change log

Abstract

New embedded predictive control applications call for more efficient ways of solving quadratic programs (QPs) in order to meet demanding real-time, power and cost requirements. A single precision QP-on-a-chip controller is proposed, implemented in a field-programmable gate array (FPGA) with an iterative linear solver at its core. A novel offline scaling procedure is introduced to aid the convergence of the reduced precision solver. The feasibility of the proposed approach is demonstrated with a real-time hardware-in-the-loop (HIL) experimental setup where an ML605 FPGA board controls a nonlinear model of a Boeing 747 aircraft running on a desktop PC through an Ethernet link. Simulations show that the quality of the closed-loop control and accuracy of individual solutions is competitive with a conventional double precision controller solving linear systems using a Riccati recursion.

Description

Journal Title

IFAC Proceedings Volumes IFAC Papersonline

Conference Name

Journal ISSN

1474-6670

Volume Title

Publisher

Elsevier BV

Rights and licensing

Except where otherwised noted, this item's license is described as http://www.rioxx.net/licenses/all-rights-reserved
Sponsorship
Engineering and Physical Sciences Research Council (EP/G030308/1)
This work was supported by the EPSRC (Grants EP/G031576/1, EP/G030308/1 and EP/I012036/1) and the EU FP7 Project EMBOCON, as well as industrial support from Xilinx, the Mathworks, and the European Space Agency.