We will be undertaking essential maintenance work on Apollo's infrastructure on Thursday 14 August and Friday 15 August, therefore expect intermittent access to Apollo's content and search interface during that time. Please also note that Apollo's "Request a copy" service will be temporarily disabled while we undertake this work.
Repository logo
 

A multilayered post-GWAS assessment on genetic susceptibility to pancreatic cancer.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

BACKGROUND: Pancreatic cancer (PC) is a complex disease in which both non-genetic and genetic factors interplay. To date, 40 GWAS hits have been associated with PC risk in individuals of European descent, explaining 4.1% of the phenotypic variance. METHODS: We complemented a new conventional PC GWAS (1D) with genome spatial autocorrelation analysis (2D) permitting to prioritize low frequency variants not detected by GWAS. These were further expanded via Hi-C map (3D) interactions to gain additional insight into the inherited basis of PC. In silico functional analysis of public genomic information allowed prioritization of potentially relevant candidate variants. RESULTS: We identified several new variants located in genes for which there is experimental evidence of their implication in the biology and function of pancreatic acinar cells. Among them is a novel independent variant in NR5A2 (rs3790840) with a meta-analysis p value = 5.91E-06 in 1D approach and a Local Moran's Index (LMI) = 7.76 in 2D approach. We also identified a multi-hit region in CASC8-a lncRNA associated with pancreatic carcinogenesis-with a lowest p value = 6.91E-05. Importantly, two new PC loci were identified both by 2D and 3D approaches: SIAH3 (LMI = 18.24), CTRB2/BCAR1 (LMI = 6.03), in addition to a chromatin interacting region in XBP1-a major regulator of the ER stress and unfolded protein responses in acinar cells-identified by 3D; all of them with a strong in silico functional support. CONCLUSIONS: This multi-step strategy, combined with an in-depth in silico functional analysis, offers a comprehensive approach to advance the study of PC genetic susceptibility and could be applied to other diseases.

Description

Journal Title

Genome Med

Conference Name

Journal ISSN

1756-994X
1756-994X

Volume Title

13

Publisher

Springer Science and Business Media LLC

Rights and licensing

Except where otherwised noted, this item's license is described as All rights reserved