Repository logo
 

Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals.

cam.issuedOnline2022-05-18
dc.contributor.authorLi, Feng
dc.contributor.authorGillett, Alexander J
dc.contributor.authorGu, Qinying
dc.contributor.authorDing, Junshuai
dc.contributor.authorChen, Zhangwu
dc.contributor.authorHele, Timothy JH
dc.contributor.authorMyers, William K
dc.contributor.authorFriend, Richard H
dc.contributor.authorEvans, Emrys W
dc.contributor.orcidLi, Feng [0000-0001-5236-3709]
dc.contributor.orcidGillett, Alexander J [0000-0001-7572-7333]
dc.contributor.orcidHele, Timothy JH [0000-0003-2367-3825]
dc.contributor.orcidMyers, William K [0000-0001-5935-9112]
dc.contributor.orcidFriend, Richard H [0000-0001-6565-6308]
dc.contributor.orcidEvans, Emrys W [0000-0002-9092-3938]
dc.date.accessioned2022-06-19T01:02:44Z
dc.date.available2022-06-19T01:02:44Z
dc.date.issued2022-05-18
dc.date.updated2022-06-19T01:02:43Z
dc.description.abstractOrganic light-emitting diodes (OLEDs) must be engineered to circumvent the efficiency limit imposed by the 3:1 ratio of triplet to singlet exciton formation following electron-hole capture. Here we show the spin nature of luminescent radicals such as TTM-3PCz allows direct energy harvesting from both singlet and triplet excitons through energy transfer, with subsequent rapid and efficient light emission from the doublet excitons. This is demonstrated with a model Thermally-Activated Delayed Fluorescence (TADF) organic semiconductor, 4CzIPN, where reverse intersystem crossing from triplets is characteristically slow (50% emission by 1 µs). The radical:TADF combination shows much faster emission via the doublet channel (80% emission by 100 ns) than the comparable TADF-only system, and sustains higher electroluminescent efficiency with increasing current density than a radical-only device. By unlocking energy transfer channels between singlet, triplet and doublet excitons, further technology opportunities are enabled for optoelectronics using organic radicals.
dc.identifier.doi10.17863/CAM.85641
dc.identifier.eissn2041-1723
dc.identifier.issn2041-1723
dc.identifier.other35585063
dc.identifier.otherPMC9117228
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/338229
dc.languageeng
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.publisher.urlhttp://dx.doi.org/10.1038/s41467-022-29759-7
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceessn: 2041-1723
dc.sourcenlmid: 101528555
dc.subject40 Engineering
dc.subject34 Chemical Sciences
dc.subject3406 Physical Chemistry
dc.subject7 Affordable and Clean Energy
dc.titleSinglet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals.
dc.typeArticle
dcterms.dateAccepted2022-03-02
prism.issueIdentifier1
prism.publicationNameNat Commun
prism.volume13
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M005143/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M01083X/1)
pubs.funder-project-idEuropean Research Council (670405)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) ERC (101020167)
rioxxterms.licenseref.urihttps://creativecommons.org/licenses/by/4.0/
rioxxterms.versionVoR
rioxxterms.versionofrecord10.1038/s41467-022-29759-7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
article.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
Description:
Published version
Licence
https://creativecommons.org/licenses/by/4.0/