Tuning the Coherent Interaction of an Electron Qubit and a Nuclear Magnon
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
A central spin qubit interacting coherently with an ensemble of proximal spins can be used to engineer entangled collective states or a multiqubit register. Making full use of this many-body platform requires tuning the interaction between the central spin and its spin register. GaAs quantum dots offer a model realization of the central spin system where an electron qubit interacts with multiple ensembles of ∼104 nuclear spins. In this work, we demonstrate tuning of the interaction between the electron qubit and the nuclear many-body system in a GaAs quantum dot. The homogeneity of the GaAs system allows us to perform high-precision and isotopically selective nuclear sideband spectroscopy, which reveals the single-nucleus electronic Knight field. Together with time-resolved spectroscopy of the nuclear field, this fully characterizes the electron-nuclear interaction for control. An algorithmic feedback sequence selects the nuclear polarization precisely, which adjusts the electron-nuclear exchange interaction via the electronic g-factor anisotropy. This allows us to tune directly the activation rate of a collective nuclear excitation (magnon) and the coherence time of the electron qubit. Our method is applicable to similar central-spin systems and enables the programmable tuning of coherent interactions in the many-body regime.
Description
Journal Title
Conference Name
Journal ISSN
2160-3308
Volume Title
Publisher
Publisher DOI
Rights and licensing
Sponsorship
Royal Society (URF\R1\211660)
Royal Society (URF\R1\211660)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (861097)
European Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (862035)
EPSRC (EP/R513180/1)