Asymmetric Aziridination of Allylic Carbamates Using Ion-Paired Rhodium Complexes and Extrapolation to C─H Amination of Phenethyl Carbamates.
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Aziridination of alkenes is an important route to chiral nitrogen-containing building blocks. Here, we report that carbamate-functionalized allylic alcohols undergo highly enantioselective aziridination using achiral dimeric Rh(II, II) complexes that are ion-paired with cinchona alkaloid-derived chiral cations. The aziridine-containing products are amenable to a variety of further reactions to generate useful groupings of functionality. Furthermore, we show that the carbamate group is effective for directing highly enantioselective benzylic C─H amination when it is appended to phenethyl alcohols. Intermolecular C─H amination of phenethyl alcohol derivatives has proven highly challenging to achieve asymmetrically yet it gives rise to valuable β-amino alcohols. Both processes result in rapid access to versatile, highly enantioenriched small molecule building blocks for synthesis and highlight the effectiveness and generality of this chiral cation-based strategy for asymmetric catalysis. We report studies that probe important structural features of the chiral cation and demonstrate that the ion-paired complexes can be formed from their individual components without a separate isolation step.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1521-3773

