Repository logo
 

sSPhos: A General Ligand for Enantioselective Arylative Phenol Dearomatization via Electrostatically-Directed Palladium Catalysis.

Published version
Peer-reviewed

Repository DOI


Change log

Abstract

Arylative phenol dearomatization affords complex, cyclohexanone-based scaffolds from simple starting materials, and asymmetric versions allow access to valuable enantioenriched structures. However, bespoke chiral ligands must typically be identified for each new scaffold variation. We have addressed this limitation by applying the concept of electrostatically-directed palladium catalysis whereby the chiral sulfonated ligand sSPhos engages in electrostatic interactions with a phenolate substrate via its associated alkali metal cation. This approach allows access to highly enantioenriched spirocyclohexadienones, a process originally reported by Buchwald and co-workers in a predominantly racemic manner. In addition, sSPhos is proficient at forming two other distinct scaffolds, which had previously required fundamentally different chiral ligands, as well as a novel oxygen-linked scaffold. We envisage that the broad generality displayed by sSPhos will facilitate the expansion of this important reaction type and highlight the potential of this unusual design principle, which harnesses attractive electrostatic interactions.

Description

Publication status: Published

Is Part Of

Publisher

American Chemical Society (ACS)

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
European Research Council (757381)
Royal Society (URF\R\191003)
ERC Horizon 2020, AstraZeneca, Royal Society