Repository logo
 

Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts.


Change log

Authors

Tse, Gary 
Tse, Vivian 
Yeo, Jie Ming 

Abstract

Ventricular arrhythmic and electrophysiological properties were examined during normokalaemia (5.2 mM [K+]), hypokalaemia (3 mM [K+]) or hypokalaemia in the presence of 0.1 or 2 mM heptanol in Langendorff-perfused mouse hearts. Left ventricular epicardial or endocardial monophasic action potential recordings were obtained during right ventricular pacing. Hypokalaemia induced ventricular premature beats (VPBs) in 5 of 7 and ventricular tachycardia (VT) in 6 of 7 hearts (P<0.01), prolonged action potential durations (APD90) from 36.2±1.7 to 55.7±2.0 msec (P<0.01) and shortened ventricular effective refractory periods (VERPs) from 44.5±4.0 to 28.9±3.8 msec (P<0.01) without altering conduction velocities (CVs) (0.17±0.01 m/sec, P>0.05), reducing excitation wavelengths (λ, CV × VERP) from 7.9±1.1 to 5.1±0.3 mm (P<0.05) while increasing critical intervals (CI, APD90-VERP) from -8.3±4.3 to 26.9±2.0 msec (P>0.001). Heptanol (0.1 mM) prevented VT, restored effective refractory period (ERP) to 45.2±2.9 msec without altering CV or APD, returning λ to control values (P>0.05) and CI to 8.4±3.8 msec (P<0.05). Heptanol (2 mM) prevented VPBs and VT, increased ERP to 67.7±7.6 msec (P<0.05), and reduced CV to 0.11±0.1 m/sec (P<0.001) without altering APD (P>0.05), returning λ and CI to control values (P>0.05). Anti-arrhythmic effects of heptanol during hypokalaemia were explicable by ERP changes, scaling λ and CI.

Description

This is the final version of the article. It first appeared from Spandidos Publications via http://dx.doi.org/10.3892/br.2016.577

Keywords

gap junction, heptanol, hypokalaemia, mouse, sodium channel, ventricular arrhythmia

Journal Title

Biomed Rep

Conference Name

Journal ISSN

2049-9434
2049-9442

Volume Title

4

Publisher

Spandidos Publications
Sponsorship
GT was supported by a Wellcome Trust Vacation Scholarship, Trinity Hall, Cambridge, a Biotechnology and Biological Sciences Research Council (BBSRC) CASE Studentship and Xention Discovery. The experiments were conducted in the laboratory of Dr. Andrew Grace and Prof. Christopher Huang at the University of Cambridge, whose funding was provided by the British Heart Foundation, the Medical Research Council, the Wellcome Trust and the BBSRC.