Repository logo
 

Mixing in axisymmetric gravity currents


Change log

Authors

Samasiri, Peeradon 
Woods, Andrew W 

Abstract

jats:pWe present new experiments to measure the rate of entrainment of ambient fluid into a high Reynolds number, axisymmetric, turbulent gravity current. The current is produced by the rapid release of a finite volume of aqueous salt solution from a lock of length jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline1" />jats:tex-mathro</jats:tex-math></jats:alternatives></jats:inline-formula> into a diverging channel, jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline2" />jats:tex-mathMisplaced &r&gt;0r&gt;0</jats:tex-math></jats:alternatives></jats:inline-formula>, of angle jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline3" />jats:tex-math9.5</jats:tex-math></jats:alternatives></jats:inline-formula>, filled with a finite depth, jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline4" />jats:tex-mathH</jats:tex-math></jats:alternatives></jats:inline-formula>, of fresh water. Using light attenuation we measure the evolving density of the flow, and using dye studies we illustrate the process of mixing between the current and ambient fluid. After an initial adjustment, a circulation develops in the head of the flow: current fluid reaches the nose of the flow, rises up and moves backwards relative to the nose. We find that, owing to the mixing, the volume of the current increases as jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline5" />jats:tex-mathV∼0.2rn7/4ro1/4H</jats:tex-math></jats:alternatives></jats:inline-formula> while the maximum depth of the head decreases as jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline6" />jats:tex-mathhn∼0.5H(ro/rn)1/4</jats:tex-math></jats:alternatives></jats:inline-formula>, where jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline7" />jats:tex-mathrn</jats:tex-math></jats:alternatives></jats:inline-formula> is the location of the front of the current. Combining these results, we estimate that the recirculating current fluid mixes with a fraction jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline8" />jats:tex-mathE=0.33±0.09</jats:tex-math></jats:alternatives></jats:inline-formula> of the ambient fluid that is directly ahead of the current and displaced upwards by it. Some of the mixed fluid supplies the tail of the flow, while the remainder recirculates into the head, which becomes progressively more dilute. In accord with Huppert & Simpson (jats:italicJ. Fluid Mech.</jats:italic>, vol. 99, 1980, pp. 785–799), we find that the position of the front increases with time as jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline9" />jats:tex-mathrn≈(1.28±0.05)B1/4t1/2</jats:tex-math></jats:alternatives></jats:inline-formula>, where jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline10" />jats:tex-mathB</jats:tex-math></jats:alternatives></jats:inline-formula> is the total buoyancy of the flow. We also find that the maximum value of the vertical integral of the buoyancy jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline11" />jats:tex-math(gh)n</jats:tex-math></jats:alternatives></jats:inline-formula> decreases with the position of the nose according to the relation jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline12" />jats:tex-math(gh)n≈(0.89±0.12)Brn−2</jats:tex-math></jats:alternatives></jats:inline-formula>, consistent with a Froude number jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112015005194_inline13" />jats:tex-math0.86±0.07</jats:tex-math></jats:alternatives></jats:inline-formula>. We compare our measurements with a new idealised self-similar solution of the depth-averaged equations that accounts for the mixing at the nose, the vertical shear in the velocity and the lateral stratification of the buoyancy within the current.</jats:p>

Description

Keywords

geophysical and geological flows, gravity currents, mixing and dispersion

Journal Title

JOURNAL OF FLUID MECHANICS

Conference Name

Journal ISSN

0022-1120
1469-7645

Volume Title

782

Publisher

Cambridge University Press (CUP)
Sponsorship
We are grateful for the helpful comments of the referees and for the support of BP in funding this work.