Repository logo
 

Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading.

Accepted version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Iljina, Marija 
Garcia, Gonzalo A 
Horrocks, Mathew H 
Tosatto, Laura 
Choi, Minee L 

Abstract

The protein alpha-synuclein (αS) self-assembles into small oligomeric species and subsequently into amyloid fibrils that accumulate and proliferate during the development of Parkinson's disease. However, the quantitative characterization of the aggregation and spreading of αS remains challenging to achieve. Previously, we identified a conformational conversion step leading from the initially formed oligomers to more compact oligomers preceding fibril formation. Here, by a combination of single-molecule fluorescence measurements and kinetic analysis, we find that the reaction in solution involves two unimolecular structural conversion steps, from the disordered to more compact oligomers and then to fibrils, which can elongate by further monomer addition. We have obtained individual rate constants for these key microscopic steps by applying a global kinetic analysis to both the decrease in the concentration of monomeric protein molecules and the increase in oligomer concentrations over a 0.5-140-µM range of αS. The resulting explicit kinetic model of αS aggregation has been used to quantitatively explore seeding the reaction by either the compact oligomers or fibrils. Our predictions reveal that, although fibrils are more effective at seeding than oligomers, very high numbers of seeds of either type, of the order of 10(4), are required to achieve efficient seeding and bypass the slow generation of aggregates through primary nucleation. Complementary cellular experiments demonstrated that two orders of magnitude lower numbers of oligomers were sufficient to generate high levels of reactive oxygen species, suggesting that effective templated seeding is likely to require both the presence of template aggregates and conditions of cellular stress.

Description

Keywords

amyloid aggregation, kinetic analysis, neurodegeneration, prion-like propagation, templated seeding, Fluorescence Resonance Energy Transfer, Kinetics, Models, Biological, Prions, Reactive Oxygen Species, alpha-Synuclein

Journal Title

Proc Natl Acad Sci U S A

Conference Name

Journal ISSN

0027-8424
1091-6490

Volume Title

113

Publisher

Proceedings of the National Academy of Sciences
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/J002119/1)
We thank Dr. Nadia Shivji and Beata Blaszczyk for ɑS protein expression, Dr. Peter Jönsson for help with preliminary TIRFM imaging experiments, Chris Taylor for help with preliminary autodilution experiments and Prof. Michel Goedert for critical reading of the manuscript. M.I. is funded by Dr. Tayyeb-Hussain Scholarship. G.A.G. is funded by the Schiff Foundation . S.G. is funded through a Wellcome Trust Intermediate Clinical Fellowship. Funding from the Frances and Augustus Newman Foundation, the European Research Council and the Biothechnology and Biophysical Sciences Research Council is gratefully acknowledged.