Repository logo
 

Energy and Electron Transfer Dynamics within a Series of Perylene Diimide/Cyclophane Systems.

Accepted version
Peer-reviewed

Repository DOI


Loading...
Thumbnail Image

Type

Article

Change log

Authors

Ryan, Seán TJ 
Young, Ryan M 
Henkelis, James J 
Hafezi, Nema 
Vermeulen, Nicolaas A 

Abstract

Artificial photosynthetic systems for solar energy conversion exploit both covalent and supramolecular chemistry to produce favorable arrangements of light-harvesting and redox-active chromophores in space. An understanding of the interplay between key processes for photosynthesis, namely light-harvesting, energy transfer, and photoinduced charge separation and the design of novel, self-assembling components capable of these processes are imperative for the realization of multifunctional integrated systems. We report our investigations on the potential of extended tetracationic cyclophane/perylene diimide systems as components for artificial photosynthetic applications. We show how the selection of appropriate heterocycles, as extending units, allows for tuning of the electron accumulation and photophysical properties of the extended tetracationic cyclophanes. Spectroscopic techniques confirm energy transfer between the extended tetracationic cyclophanes and perylene diimide is ultrafast and quantitative, while the heterocycle specifically influences the energy transfer related parameters and the acceptor excited state.

Description

Keywords

0306 Physical Chemistry (incl. Structural), 0303 Macromolecular and Materials Chemistry, 0299 Other Physical Sciences, 0305 Organic Chemistry

Journal Title

J Am Chem Soc

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

137

Publisher

American Chemical Society (ACS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/G060649/1)
Engineering and Physical Sciences Research Council (EP/H007024/1)
Engineering and Physical Sciences Research Council (EP/L027151/1)
European Research Council (240629)
S.T.J.R. thanks the Cambridge Home and European Scholarship Scheme and the Robert Gardiner memorial scholarship. S.T.J.R., A.F. and O.A.S. thank the ERC starting investigator grant ASPiRe (project no. 240629) and the EPSRC (reference no. EP/G060649/1). Femtosecond and nanosecond spectroscopy (R.M.Y.), EPR spectroscopy (M.D.K.) and phosphorescence spectroscopy (Y.W.) were supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001059. J.F.S., J.J.H., N.H., N.A.V. and E.D.J. acknowledge the Joint Center of Excellence in Integrated Nano-Systems (JCIN) between KACST and Northwestern University (Project 34-946) for their continued financial support. E.J.D. acknowledges NSF and Ryan fellowships. A.H. and W.M.N. thank the COST Action CM1005 “Supramolecular Chemistry in Water” and the DFG (grant NA-686/5) for financial support.