Repository logo
 

mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance.

Published version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

The ability to predict how a mutation affects ligand binding is an essential step in understanding, anticipating and improving the design of new treatments for drug resistance, and in understanding genetic diseases. Here we present mCSM-lig, a structure-guided computational approach for quantifying the effects of single-point missense mutations on affinities of small molecules for proteins. mCSM-lig uses graph-based signatures to represent the wild-type environment of mutations, and small-molecule chemical features and changes in protein stability as evidence to train a predictive model using a representative set of protein-ligand complexes from the Platinum database. We show our method provides a very good correlation with experimental data (up to ρ = 0.67) and is effective in predicting a range of chemotherapeutic, antiviral and antibiotic resistance mutations, providing useful insights for genotypic screening and to guide drug development. mCSM-lig also provides insights into understanding Mendelian disease mutations and as a tool for guiding protein design. mCSM-lig is freely available as a web server at http://structure.bioc.cam.ac.uk/mcsm_lig.

Description

Journal Title

Sci Rep

Conference Name

Journal ISSN

2045-2322
2045-2322

Volume Title

6

Publisher

Springer Science and Business Media LLC

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
Medical Research Council (MR/M026302/1)
Medical Research Council (MR/N501864/1)
Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [MR/M026302/1 to D.E.V.P, T.L.B. and D.B.A.]. René Rachou Research Center (CPqRR/FIOCRUZ Minas), Brazil [to D.E.V.P.]; NHMRC CJ Martin Fellowship [APP1072476 to D.B.A.]; University of Cambridge and The Wellcome Trust for facilities and support [to T.L.B.].