The monotone wrapped Fukaya category and the open-closed string map
View / Open Files
Authors
Ritter, Alexander F
Smith, Ivan
Publication Date
2016-08-09Journal Title
Selecta Mathematica
ISSN
1022-1824
Publisher
Springer
Language
English
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Ritter, A. F., & Smith, I. (2016). The monotone wrapped Fukaya category and the open-closed string map. Selecta Mathematica https://doi.org/10.1007/s00029-016-0255-9
Abstract
We build the wrapped Fukaya category $\textit{W}$($\textit{E}$)for any monotone symplectic manifold $\textit{E}$, convex at infinity. We define the open-closed and closed-open string maps, OC : HH$_{*}$($\textit{W}$($\textit{E}$)) → $\textit{SH}^{*}$($\textit{E}$) and CO : $\textit{SH}^{*}$($\textit{E}$) → HH$^{*}$($\textit{W}$($\textit{E}$)). We study their algebraic properties and prove that the string maps are compatible with the $\textit{c}_1$($\textit{TE}$)-eigenvalue splitting of $\textit{W}$($\textit{E}$). We extend Abouzaid’s generation criterion from the exact to the monotone setting. We construct an acceleration functor $\textit{AF}$ : $\textit{F}$($\textit{E}$) → $\textit{W}$($\textit{E}$) from the compact Fukaya category which on Hochschild (co)homology commutes with the string maps and the canonical map $\textit{c}^{*}$ : $\textit{QH}^{*}$($\textit{E}$) → $\textit{SH}^{*}$($\textit{E}$). We define the $\textit{SH}^{*}$($\textit{E}$)-module structure on the Hochschild (co)homology of $\textit{W}$($\textit{E}$) which is compatible with the string maps (this was proved independently for exact convex symplectic manifolds by Ganatra). The module and unital algebra structures, and the generation criterion, also hold for the compact Fukaya category $\textit{F}$($\textit{E}$), and also hold for closed monotone symplectic manifolds. As an application, we show that the wrapped category of $\textit{O}$(−$\textit{k}$) → $\Bbb {CP}^m$ is proper (cohomologically finite) for 1 ≤ $\textit{k}$ ≤ $\textit{m}$. For any monotone negative line bundle $\textit{E}$ over a closed monotone toric manifold $\textit{B}$, we show that $\textit{SH}^{*}$($\textit{E}$) $\neq$ 0, $\textit{W}$($\textit{E}$) is non-trivial and $\textit{E}$ contains a non-displaceable monotone Lagrangian torus $\textit{L}$ on which OC is non-zero.
Identifiers
External DOI: https://doi.org/10.1007/s00029-016-0255-9
This record's URL: https://www.repository.cam.ac.uk/handle/1810/260145
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved