Repository logo
 

Advanced Lithium–Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Zhao, T 
Ye, Y 
Peng, X 
Kim, HK 

Abstract

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Issues with the dissolution and diffusion of polysulfides in liquid organic electrolytes hinder the advance of lithium–sulfur batteries for next-generation energy storage. To trap and re-utilize the polysulfides without hampering lithium ion conductivity, a bio-inspired, brush-like interlayer consisting of zinc oxide (ZnO) nanowires and interconnected conductive frameworks is proposed. The chemical effect of ZnO on capturing polysulfides has been conceptually confirmed, initially by using a commercially available macroporous nickel foam as a conductive backbone, which is then replaced by a free-standing, ultra-light micro/mesoporous carbon (C) nanofiber mat for practical application. Having a high sulfur loading of 3 mg cm −2 , the sulfur/multi-walled carbon nanotube composite cathode with a ZnO/C interlayer exhibits a reversible capacity of 776 mA h g −1 after 200 cycles at 1C with only 0.05% average capacity loss per cycle. A good cycle performance at a high rate can be mainly attributed to the strong chemical bonding between ZnO and polysulfides, fast electron transfer, and an optimized ion diffusion path arising from a well-organized nanoarchitecture. These results herald a new approach to advanced lithium–sulfur batteries using brush-like chemi-functional interlayers.

Description

Keywords

lithium-sulfur batteries, brush-like interlayer, zinc oxide nanowires, conductive frameworks, polysulfides

Journal Title

Advanced Functional Materials

Conference Name

Journal ISSN

1616-301X
1616-3028

Volume Title

26

Publisher

Wiley
Sponsorship
European Research Council (259619)
European Commission (312483)
T.Z. acknowledges the support of a Krishnan-Ang studentship from Trinity College, Cambridge. X.P., G.D., and C.D. acknowledge funding from ERC under Grant No. 259619 PHOTO EM. C.D. acknowledges financial support from the EU under Grant No. 312483 ESTEEM2. This work was also supported by the National Science Foundation of China (Grant No. 21373028), Major achievements Transformation Project for Central University in Beijing, and Beijing Science and Technology Project (Grant No. D151100003015001).