Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage.
Authors
Bergholt, MS
St-Pierre, J-P
Offeddu, Giovanni
Parmar, PA
Albro, MB
Puetzer, JL
Stevens, MM
Publication Date
2016-12-28Journal Title
ACS Central Science
ISSN
2374-7943
Publisher
ACS Publications
Volume
2
Issue
12
Pages
885-895
Language
English
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Bergholt, M., St-Pierre, J., Offeddu, G., Parmar, P., Albro, M., Puetzer, J., Oyen, M., & et al. (2016). Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage.. ACS Central Science, 2 (12), 885-895. https://doi.org/10.1021/acscentsci.6b00222
Abstract
Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of native and tissue-engineered articular cartilage using bovine tissues and cells. Our results revealed previously unreported tissue complexity into at least six zones above the tidemark based on a principal component analysis and k-means clustering analysis of the distribution and orientation of the main ECM components. Correlation of nanoindentation and Raman spectroscopic data suggested that the biomechanics across the tissue depth are influenced by ECM microstructure rather than composition. Further, Raman spectroscopy together with multivariate analysis revealed changes in the collagen, glycosaminoglycan, and water distributions in tissue-engineered constructs over time. These changes were assessed using simple metrics that promise to instruct efforts toward the regeneration of a broad range of tissues with native zonal complexity and functional performance.
Relationships
Is supplemented by: https://doi.org/10.5281/zenodo.163327
Sponsorship
M.S.B., J.-P.S.-P., and M.M.S. acknowledge the support of the Medical Research Council, the Engineering and Physical Sciences Research Council, and the Biotechnology and Biological Sciences Research Council UK Regenerative Medicine Platform Hubs “Acellular Approaches for Therapeutic Delivery” (MR/K026682/1) and “A Hub for Engineering and Exploiting the Stem Cell Niche” (MR/K026666/1). J.-P.S.-P. and M.M.S. were also supported by the Medical Engineering Solutions in the Osteoarthritis Centre of Excellence, funded by the Wellcome Trust and the Engineering and Physical Sciences Research Council (088844). J.-P.S.-P. would like to acknowledge the Value in People Award from the Wellcome Trust Institutional Strategic Support Fund (097816/Z/11/A). M.M.S. also acknowledges the support from the ERC Seventh Framework Programme Consolidator grant “Naturale CG” under Grant Agreement No. 616417.
Funder references
EPSRC (EP/G037221/1)
Embargo Lift Date
2100-01-01
Identifiers
External DOI: https://doi.org/10.1021/acscentsci.6b00222
This record's URL: https://www.repository.cam.ac.uk/handle/1810/262017
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved