Repository logo
 

Spatio-temporal activation of caspase-8 in myeloid cells upon ischemic stroke

Published version
Peer-reviewed

Type

Article

Change log

Authors

Rodhe, J 
Burguillos, MA 
de Pablos, RM 
Kavanagh, E 
Persson, A 

Abstract

Ischemic stroke (caused by thrombosis, embolism or vasoconstriction) lead to the recruitment and activation of immune cells including resident microglia and infiltrating peripheral macrophages, which contribute to an inflammatory response involved in regulation of the neuronal damage. We showed earlier that upon pro-inflammatory stimuli, the orderly activation of caspase-8 and caspase-3/7 regulates microglia activation through a protein kinase C-δ dependent pathway. Here, we present in vivo evidence for the activation of caspase-8 and caspase-3 in microglia/macrophages in post-mortem tissue from human ischemic stroke subjects. Indeed, CD68-positive microglia/macrophages in the ischemic peri-infarct area exhibited significant expression of the cleaved and active form of caspase-8 and caspase-3. The temporal and spatial activation of caspase-8 was further investigated in a permanent middle cerebral artery occlusion mouse model of ischemic stroke. Increasing levels of active caspase-8 was found in Iba1-positive cells over time in the peri-infarct area, at 6, 24 and 48 h after artery occlusion. Analysis of post-mortem brain tissue from human subject who suffered two stroke events, referred as recent and old stroke, revealed that expression of cleaved caspase-8 and -3 in CD68-positive cells could only be found in the recent stroke area. Analysis of cleaved caspase-8 and -3 expressions in a panel of human stroke cases arranged upon days-after stroke and age-matched controls suggested that the expression of these caspases correlated with the time of onset of stroke. Collectively, these data illustrate the temporal and spatial activation of caspase-8 and -3 in microglia/macrophages occurring upon ischemic stroke and suggest that the expression of these caspases could be used in neuropathological diagnostic work.

Description

Keywords

caspase-3, caspase-8, human brain tissue, ischemic stroke, macrophage, microglia, spatio-temporal activation, pMCAO model

Journal Title

Acta Neuropathologica Communications

Conference Name

Journal ISSN

2051-5960
2051-5960

Volume Title

4

Publisher

BioMed Central
Sponsorship
J.R. is supported by a doctoral fellowship from the Karolinska Institutet Foundations; M.A.B. is supported by a postdoctoral fellowship from Swedish Research Council. This work has been supported by grants from the Swedish Research Council, the Swedish Brain Foundation, the Parkinson foundation in Sweden, the Spanish MINECO/FEDER/UE and the Karolinska Institutet Foundations.