Show simple item record

dc.contributor.authorChikkaraddy, Rohiten
dc.contributor.authorZheng, Xen
dc.contributor.authorBenz, Fen
dc.contributor.authorBrooks, LJen
dc.contributor.authorde Nijs, Barten
dc.contributor.authorCarnegie, Cloudyen
dc.contributor.authorKleemann, MEen
dc.contributor.authorMertens, Jen
dc.contributor.authorBowman, RWen
dc.contributor.authorVandenbosch, GAEen
dc.contributor.authorMoshchalkov, VVen
dc.contributor.authorBaumberg, Jeremyen
dc.date.accessioned2017-05-11T12:12:35Z
dc.date.available2017-05-11T12:12:35Z
dc.date.issued2017-03-15en
dc.identifier.issn2330-4022
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/264185
dc.description.abstractPlasmonic nanocavities with sub-5-nm gaps between nanoparticles support multiple resonances possessing ultra-high-field confinement and enhancements. Here we systematically compare the two fundamentally different resonant gap modes: transverse waveguide (s) and antenna modes (l), which, despite both tightly confining light within the gap, have completely different near-field and far-field radiation patterns. By varying the gap size, both experimentally and theoretically, we show how changing the nanoparticle shape from sphere to cube alters coupling of s and l modes, resulting in strongly hybridized (j) modes. Through rigorous group representation analysis we identify their composition and coupling. This systematic analysis of the Purcell factors shows that modes with optical field perpendicular to the gap are best to probe the optical properties of cavity-bound emitters, such as single molecules.
dc.description.sponsorshipWe acknowledge financial support from EPSRC Grants EP/G060649/1, EP/K028510/1, and EP/L027151/1 and ERC Grant LINASS 320503. R.C. acknowledges support from the Dr. Manmohan Singh scholarship from St. John’s College. F.B. acknowledges support from the Winton Programme for the Physics of Sustainability. G.A.E.V., V.V.M., and X.Z. acknowledge the C2 project (C24/15/015) and the PDMK/14/126 project of KU Leuven, the FWO Long-Term Stay Abroad Project Grant V405115N, and the Methusalem Project funded by the Flemish government.
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.subjectmetasurfacesen
dc.subjectnanocavitiesen
dc.subjectpatch antennasen
dc.subjectplasmonicsen
dc.subjectPurcell factoren
dc.subjectSERSen
dc.subjectstrong couplingen
dc.titleHow Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirroren
dc.typeArticle
prism.endingPage475
prism.issueIdentifier3en
prism.publicationDate2017en
prism.publicationNameACS Photonicsen
prism.startingPage469
prism.volume4en
dc.identifier.doi10.17863/CAM.9544
dcterms.dateAccepted2017-02-13en
rioxxterms.versionofrecord10.1021/acsphotonics.6b00908en
rioxxterms.versionAMen
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2017-03-15en
dc.contributor.orcidChikkaraddy, Rohit [0000-0002-3840-4188]
dc.contributor.orcidBaumberg, Jeremy [0000-0002-9606-9488]
dc.identifier.eissn2330-4022
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/L027151/1)
pubs.funder-project-idEPSRC (EP/G060649/1)
pubs.funder-project-idEuropean Research Council (320503)
pubs.funder-project-idEPSRC (EP/K028510/1)
cam.issuedOnline2017-02-13en
datacite.issupplementedby.doi10.17863/CAM.7777en
rioxxterms.freetoread.startdate2018-02-13


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record