Repository logo
 

Diagnostic Test Accuracy of a 2-Transcript Host RNA Signature for Discriminating Bacterial vs Viral Infection in Febrile Children

Published version
Peer-reviewed

Change log

Authors

Herberg, JA 
Kaforou, M 
Wright, VJ 
Shailes, H 
Eleftherohorinou, H 

Abstract

Importance: Because clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others.

Objective: To identify a blood RNA expression signature that distinguishes bacterial from viral infection in febrile children.

Design, Setting, and Participants: Febrile children presenting to participating hospitals in the United Kingdom, Spain, the Netherlands, and the United States between 2009-2013 were prospectively recruited, comprising a discovery group and validation group. Each group was classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in the discovery group and diagnostic performance assessed in the validation group. Additional validation was undertaken in separate studies of children with meningococcal disease (n = 24) and inflammatory diseases (n = 48) and on published gene expression datasets.

Exposures: A 2-transcript RNA expression signature distinguishing bacterial infection from viral infection was evaluated against clinical and microbiological diagnosis.

Main Outcomes and Measures: Definite bacterial and viral infection was confirmed by culture or molecular detection of the pathogens. Performance of the RNA signature was evaluated in the definite bacterial and viral group and in the indeterminate infection group.

Results: The discovery group of 240 children (median age, 19 months; 62% male) included 52 with definite bacterial infection, of whom 36 (69%) required intensive care, and 92 with definite viral infection, of whom 32 (35%) required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (2-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts. When this 2-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections; median age, 17 months; 57% male), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial (sensitivity, 100% [95% CI, 85%-100%]) and 27 of 28 patients with definite viral infection were classified as viral (specificity, 96.4% [95% CI, 89.3%-100%]). When applied to additional validation datasets from patients with meningococcal and inflammatory diseases, bacterial infection was identified with a sensitivity of 91.7% (95% CI, 79.2%-100%) and 90.0% (95% CI, 70.0%-100%), respectively, and with specificity of 96.0% (95% CI, 88.0%-100%) and 95.8% (95% CI, 89.6%-100%). Of the children in the indeterminate groups, 46.3% (63/136) were classified as having bacterial infection, although 94.9% (129/136) received antibiotic treatment.

Conclusions and Relevance: This study provides preliminary data regarding test accuracy of a 2-transcript host RNA signature discriminating bacterial from viral infection in febrile children. Further studies are needed in diverse groups of patients to assess accuracy and clinical utility of this test in different clinical settings.

Description

Keywords

Anti-Bacterial Agents, Antigens, Area Under Curve, Bacterial Infections, Biomarkers, Child, Preschool, Coinfection, Cytoskeletal Proteins, Diagnosis, Differential, Female, Fever, Gene Expression Profiling, Genetic Markers, Humans, Infant, Logistic Models, Male, Prospective Studies, RNA, Risk, Sensitivity and Specificity, Severity of Illness Index, Virus Diseases

Journal Title

JAMA

Conference Name

Journal ISSN

0098-7484
1538-3598

Volume Title

316

Publisher

American Medical Association
Sponsorship
This work was supported by the Imperial College Comprehensive Biomedical Research Centre (DMPED P26077); National Institute of Health Research (NIHR) Senior Investigator award (Dr Levin); Great Ormond St Hospital Charity (V1401) (Dr Wright); European Union’s Seventh Framework Program (EC-GA 279185) (EUCLIDS) (Dr Herberg); Imperial College-Wellcome Trust Antimicrobial Research Collaborative (ARC) Early Career Fellowship (RSRO 54990) (Dr Kaforou); Spanish Research Program (FIS; PI10/00540 and Intensificación actividad investigadora of National Plan I + D + I and FEDER funds) and Regional Galician funds (Promotion of Research Project 10 PXIB 918 184 PR) (Dr Martinón-Torres); Southampton NIHR Wellcome Trust Clinical Research Facility and NIHR Wessex Local Clinical Research Network; and Academic Medical Centre Amsterdam MD/PhD program 2013 (Ms Barendregt). The UK meningococcal disease cohort was established with grant support from the Meningitis Research Foundation (United Kingdom); the inflammatory disease cohort was supported by a Macklin Foundation grant (Dr Burns), National Institutes of Health grant U54-HL108460 (Dr Burns); and The Hartwell Foundation and The Harold Amos Medical Faculty Development Program/Robert Wood Johnson Foundation (Dr Tremoulet).