Repository logo
 

When the guardian sleeps: Reactivation of the p53 pathway in cancer

Accepted version
Peer-reviewed

Change log

Authors

Merkel, O 
Taylor, N 
Prutsch, N 
Staber, PB 
Moriggl, R 

Abstract

The p53 tumor suppressor is inactivated in most cancers, thus suggesting that loss of p53 is a prerequisite for tumor growth. Therefore, its reintroduction through different means bears great clinical potential. After a brief introduction to current knowledge of p53 and its regulation by the ubiquitin-ligases MDM2/MDMX and post-translational modifications, we will discuss small molecules that are able to reactivate specific, frequently observed mutant forms of p53 and their applicability for clinical purposes. Many malignancies display amplification of MDM genes encoding negative regulators of p53 and therefore much effort to date has concentrated on the development of molecules that inhibit MDM2, the most advanced of which are being tested in clinical trials for sarcoma, glioblastoma, bladder cancer and lung adenocarcinoma. These will be discussed as will recent findings of MDMX inhibitors: these are of special importance as it has been shown that cancers that become resistant to MDM2 inhibitors often amplify MDM4. Finally, we will also touch on gene therapy and vaccination approaches; the former of which aims to replace mutated TP53 and the latter whose goal is to activate the body's immune system toward mutant p53 expressing cells. Besides the obvious importance of MDM2 and MDMX expression for regulation of p53, other regulatory factors should not be underestimated and are also described. Despite the beauty of the concept, the past years have shown that many obstacles have to be overcome to bring p53 reactivation to the clinic on a broad scale, and it is likely that in most cases it will be part of a combined therapeutic approach. However, improving current p53 targeted molecules and finding the best therapy partners will clearly impact the future of cancer therapy.

Description

Keywords

p53, MDM2, MDMX, TP53 mutation, TP53 gain-of-function, gene therapy

Journal Title

Mutation Research - Reviews in Mutation Research

Conference Name

Journal ISSN

1383-5742
1388-2139

Volume Title

773

Publisher

Elsevier
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (675712)
This study was supported by an EU Marie Curie Actions Innovative Training Network grant (ALKATRAS 675712). We are also grateful to collaborators of the European Research Initiative of ALK-related malignancies (www.erialcl.net). We thank the Jubiläumsfond der Österreichischen Nationalbank (Grant No. 14856, to OM) and the Fonds der Stadt Wien für innovative interdisziplinäre Krebsforschung (The role of Brg1 in Anaplastic Large Cell Lymphoma, to OM) as well as the Austrian Science Funds (FWF; Grant Nos P 26011 and P 29251, to LK). SDT is a Senior Lecturer supported by funding from Bloodwise. RM was supported by grants SFB F47 (SFB F4707-B20) from the Austrian Science Fund.