Repository logo
 

The non-Gaussian tops and tails of diffusing boomerangs

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

Experiments involving the two-dimensional passive diffusion of colloidal boomerangs tracked off their centre of mobility have shown striking non-Gaussian tails in their probability distribution function [Chakrabarty et al., Soft Matter, 2016, 12, 4318]. This in turn can lead to anomalous diffusion characteristics, including mean drift. In this paper, we develop a general theoretical explanation for these measurements. The idea relies on calculating the two-dimensional probability densities at the centre of mobility of the particle, where all distributions are Gaussian, and then transforming them to a different reference point. Our model clearly captures the experimental results, without any fitting parameters, and demonstrates that the one-dimensional probability distributions may also exhibit strongly non-Gaussian tops. These results indicate that the choice of tracking point can cause a considerable departure from Gaussian statistics, potentially causing some common modelling techniques to fail.

Description

Keywords

cond-mat.soft, cond-mat.soft, physics.flu-dyn

Journal Title

Soft Matter

Conference Name

Journal ISSN

1744-683X
1744-6848

Volume Title

13

Publisher

Royal Society of Chemistry
Sponsorship
European Research Council (682754)
This research was funded in part by an ERC grant to EL and a Mobility Plus Fellowship from the Polish Ministry of Science and Higher Education to ML.