Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach.
View / Open Files
Publication Date
2017Journal Title
Brain Behav Evol
ISSN
0006-8977
Publisher
S. Karger AG
Volume
89
Pages
274-285
Language
English
Type
Article
This Version
AM
Physical Medium
Print-Electronic
Metadata
Show full item recordCitation
Harrison, P. W., & Montgomery, S. (2017). Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach.. Brain Behav Evol, 89 274-285. https://doi.org/10.1159/000477432
Abstract
What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure.
Sponsorship
Early Career Research Fellowship from the Leverhulme Trust
Independent Research Fellowship from NERC
Funder references
Natural Environment Research Council (NE/N014936/1)
Identifiers
External DOI: https://doi.org/10.1159/000477432
This record's URL: https://www.repository.cam.ac.uk/handle/1810/265193
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.