Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.
View / Open Files
Authors
Kim, Young-Hoon
Wolf, Christoph
Kim, Young-Tae
Cho, Himchan
Kwon, Woosung
Do, Sungan
Park, Chan Gyung
Rhee, Shi-Woo
Im, Sang Hyuk
Lee, Tae-Woo
Publication Date
2017-07-25Journal Title
ACS Nano
ISSN
1936-0851
Volume
11
Issue
7
Pages
6586-6593
Language
eng
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Kim, Y., Wolf, C., Kim, Y., Cho, H., Kwon, W., Do, S., Sadhanala, A., et al. (2017). Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.. ACS Nano, 11 (7), 6586-6593. https://doi.org/10.1021/acsnano.6b07617
Abstract
Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter DB (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than DB show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.
Sponsorship
EPSRC (EP/M005143/1)
EPSRC (via Brunel University London) (unknown)
Identifiers
External DOI: https://doi.org/10.1021/acsnano.6b07617
This record's URL: https://www.repository.cam.ac.uk/handle/1810/269683
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved