Causality and the initial value problem in Modified Gravity
View / Open Files
Authors
Advisors
Reall, Harvey
Date
2019-07-01Awarding Institution
University of Cambridge
Author Affiliation
Applied Mathematics and Theoretical Physics
Qualification
Doctor of Philosophy (PhD)
Language
English
Type
Thesis
Metadata
Show full item recordCitation
Papallo, G. (2019). Causality and the initial value problem in Modified Gravity (Doctoral thesis). https://doi.org/10.17863/CAM.24726
Abstract
Lovelock and Horndeski theories are natural generalisations of Einstein’s theory of General Relativity. They find applications in Astrophysics, Cosmology and String Theory. This dissertation discusses some issues regarding the mathematical consistency of these theories.
In the first part of the thesis we study the Shapiro time delay for gravitons in spherically symmetric spacetimes in Einstein–Gauss–Bonnet gravity (a Lovelock theory). In Lovelock theories, gravitons can propagate faster or slower than light. We show that, thanks to this property, it is possible for them to experience a negative time delay. It was recently argued that this feature could be employed to construct closed causal curves, implying that the theory should be discarded as causally pathological. We show that this construction is unphysical, for it cannot be realised as the evolution of sensible initial data.
The second part investigates the local well-posedness of the initial value problem for Lovelock and Horndeski theories. For the initial value problem to be well-posed it is necessary that the equations of motion be strongly hyperbolic. It is known that when the background fields are large, even weak hyperbolicity may fail. Hence, we consider the weak field regime, in which these equations can be considered as small perturbations of the Einstein equations. We prove that both Lovelock and Horndeski theories are weakly hyperbolic in a generic weak field background in harmonic and generalised harmonic gauge, respectively. We show that Lovelock theories fail to be strongly hyperbolic in this setting. We also prove that the most general Horndeski theory which is strongly hyperbolic is simply a “k-essence” theory coupled to Einstein gravity and that any more general theory would necessarily fail to be so.
Our results imply that the standard methods used to prove the well-posedness of the initial value problem for the Einstein equations cannot be extended to Lovelock or Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields and hence might not constitute a valid alternative to General Relativity.
Keywords
general relativity, modified gravity, alternative theories of gravity, theoretical physics
Sponsorship
The research was funded by an STFC studentship and a Cambridge Philosophical Society research grant.
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.24726
Rights
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Licence URL: https://creativecommons.org/licenses/by-nc-sa/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk