Adaptive Optics for Stellar Interferometry
View / Open Files
Authors
Advisors
Buscher, David
Date
2005-02-05Awarding Institution
University of Cambridge
Author Affiliation
Physics
Qualification
Doctor of Philosophy (PhD)
Language
English
Type
Thesis
Metadata
Show full item recordCitation
Bharmal, N. (2005). Adaptive Optics for Stellar Interferometry (Doctoral thesis). https://doi.org/10.17863/CAM.25906
Abstract
The limitations of current stellar interferometers is their low sensitivity, and the next generation will account for this by using larger apertures. The phase aberrations from seeing will need the consideration of adaptive optics (AO). Accordingly, this dissertation will first examine the problem that seeing causes in stellar interferometers. The application of Adaptive Optics in Stellar Interferometry will then consider these results to achieve the final goal: reduced losses in fringe visibility and increased sensitivity. The thesis is organised with the second chapter discussing the theory of seeing phase aberrations; their origin and effect on image resolution and fringe visibility. These are used to quantify and compare performance metrics in AO and interferometry, and the specific benefits of AO for interferometry and its method of implementation are used to highlight areas of research that are discussed in other chapters.
The third chapter discusses a solution to the problem of making high sensitivity wavefront measurements is presented in this chapter. Starting with existing WFSs used in interferometer AO systems, the
methods of measuring high order aberrations are considered. A new WFS method, Diffractive Phase Sensing, is presented and an implementation is described in the context of a specific WFS design: the Nine Element Sensor (NES). The fourth chapter concerns numerical simulations of the NES to evaluate its performance
in an AO system. Comparisons are made with two existing WFS designs, one commonly used in astronomical AO and the other in use within current interferometer AO. The conclusions drawn specify the observation regimes for which each of the three WFS designs is most appropriate. The design and construction of a NES prototype is discussed in the fifth chapter. The prototype WFS is first tested in the laboratory, and its novel optic and CCD detector operation were analysed prior to use. The prototype was then used to make measurements of defocus phase aberrations at COAST, and results from these observations are presented and discussed to understand their implication. The final chapter considers the existing AO system at COAST—the autoguider—and its measurements of tip/tilt aberrations. The aim and method used to parameterise the atmospheric turbulence is detailed, and the results are verified with measurements from a DIMM and with fringe visibilities. Using the autoguider, the statistics of the seeing at the COAST site is presented from a year long dataset.
Keywords
adaptive optics, stellar interferometry, astronomy
Rights
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
Licence URL: https://creativecommons.org/licenses/by-sa/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk