Repository logo
 

Calpain inhibition reduces NMDA receptor rundown in rat substantia nigra dopamine neurons.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Zhao, Jerry 
Jones, Susan 

Abstract

Repeated activation of N-Methyl-d-aspartate receptors (NMDARs) causes a Ca2+-dependent reduction in NMDAR-mediated current in dopamine (DA) neurons of the substantia nigra pars compacta (SNc) in one week old rats; however, a Ca2+-dependent regulatory protein has not been identified. The role of the Ca2+-dependent cysteine protease, calpain, in mediating NMDAR current rundown was investigated. In brain slices from rats aged postnatal day 7-9 ('P7'), bath application of either of the membrane permeable calpain inhibitors, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN, 20 μM) or MDL-28170 (30 μM) significantly reduced whole-cell NMDAR current rundown. To investigate the role of the calpain-2 isoform, the membrane permeable calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I, 200 nM), was applied; C2I application significantly reduced whole cell NMDAR current rundown. Interestingly, ALLN but not C2I significantly reduced rundown of NMDA-EPSCs. These results suggest the calpain-2 isoform mediates Ca2+-dependent regulation of extrasynaptic NMDAR current in the first postnatal week, while calpain-1 might mediate rundown of synaptic NMDAR currents. One week later in postnatal development, at P12-P16 ('P14'), there was significantly less rundown in SNc-DA neurons, and no significant effect on rundown of either Ca2+ chelation or treatment with the calpain inhibitor, ALLN, suggesting that the rundown observed in SNc-DA neurons from two week-old rats might be Ca2+-independent. In conclusion, Ca2+-dependent rundown of extrasynaptic NMDAR currents in SNc DA neurons involves calpain-2 activation, but Ca2+- and calpain-2-dependent NMDAR current rundown is developmentally regulated.

Description

Keywords

Calpain, Dopamine neurons, N-Methyl-d-aspartate receptor, Substantia nigra pars compacta, Animals, Calcium, Calpain, Cations, Divalent, Dopaminergic Neurons, Glycoproteins, Membrane Potentials, Membrane Transport Modulators, Pars Compacta, Rats, Wistar, Receptors, N-Methyl-D-Aspartate, Synapses, Tissue Culture Techniques

Journal Title

Neuropharmacology

Conference Name

Journal ISSN

0028-3908
1873-7064

Volume Title

137

Publisher

Elsevier BV
Sponsorship
None