Repository logo
 

Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives

Published version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Automated development of chemical processes requires access to sophisticated algorithms for multi-objective optimization, since single-objective optimization fails to identify the trade-offs between conflicting performance criteria. Herein we report the implementation of a new multi-objective machine learning optimization algorithm for self-optimization, and demonstrate it in two exemplar chemical reactions performed in continuous flow. The algorithm successfully identified a set of optimal conditions corresponding to the trade-off curve (Pareto front) between environmental and economic objectives in both cases. Thus, it reveals the complete underlying trade-off and is not limited to one compromise as is the case in many other studies. The machine learning algorithm proved to be extremely data efficient, identifying the optimal conditions for the objectives in a lower number of experiments compared to single-objective optimizations. The complete underlying trade-off between multiple objectives is identified without arbitrary weighting factors, but via true multi-objective optimization.

Description

Journal Title

Chemical Engineering Journal

Conference Name

Journal ISSN

1385-8947
1873-3212

Volume Title

352

Publisher

Elsevier

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
EPSRC CASE with AstraZeneca