Repository logo
 

Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Type

Article

Change log

Authors

Vreugdenhil, CA 
Griffiths, RW 
Gayen, B 

Abstract

jats:pConvection in a rotating rectangular basin with differential thermal forcing at one horizontal boundary is examined using laboratory experiments. The experiments have an imposed heat flux boundary condition, are at large values of the flux Rayleigh number (jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline1" />jats:tex-mathRaFO(10131014)</jats:tex-math></jats:alternatives></jats:inline-formula> based on the box length jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline2" />jats:tex-mathL</jats:tex-math></jats:alternatives></jats:inline-formula>), use water with Prandtl number jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline3" />jats:tex-mathPr≈4</jats:tex-math></jats:alternatives></jats:inline-formula> and have a small depth to length aspect ratio. The results show the conditions for transition from non-rotating horizontal convection governed by an inertial–buoyancy balance in the thermal boundary layer, to circulation governed by geostrophic flow in the boundary layer. The geostrophic balance constrains mean flow and reduces the heat transport as Nusselt number jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline4" />jats:tex-mathNu∼(RaFRo)1/6</jats:tex-math></jats:alternatives></jats:inline-formula>, where jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline5" />jats:tex-mathRo=B1/2/f3/2L</jats:tex-math></jats:alternatives></jats:inline-formula> is the convective Rossby number, jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline6" />jats:tex-mathB</jats:tex-math></jats:alternatives></jats:inline-formula> is the imposed buoyancy flux and jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline7" />jats:tex-mathf</jats:tex-math></jats:alternatives></jats:inline-formula> is the Coriolis parameter. Thus flow in the geostrophic boundary layer regime is governed by the relative roles of horizontal convective accelerations and Coriolis accelerations, or buoyancy and rotation, in the boundary layer. Experimental evidence suggests that for more rapid rotation there is another transition to a regime in which the momentum budget is dominated by fluctuating vertical accelerations in a region of vortical plumes, which we refer to as a ‘chimney’ following related discussion of regions of deep convection in the ocean. Coupling of the chimney convection in the region of destabilising boundary flux to the diffusive boundary layer of horizontal convection in the region of stabilising boundary flux gives heat transport independent of rotation in this ‘inertial chimney’ regime, and the new scaling jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline8" />jats:tex-mathNuRaF1/4</jats:tex-math></jats:alternatives></jats:inline-formula>. Scaling analysis predicts the transition conditions observed in the experiments, as well as a further ‘geostrophic chimney’ regime in which the vertical plumes are controlled by local geostrophy. When jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S002211201700249X_inline9" />jats:tex-mathMisplaced &Ro&lt;10^{-1}Ro&lt;10^{-1}</jats:tex-math></jats:alternatives></jats:inline-formula>, the convection is also observed to produce a set of large basin-scale gyres at all depths in the time-averaged flow.</jats:p>

Description

Keywords

ocean circulation, rotating flows, turbulent convection

Journal Title

Journal of Fluid Mechanics

Conference Name

Journal ISSN

0022-1120
1469-7645

Volume Title

823

Publisher

Cambridge University Press (CUP)