Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids.
View / Open Files
Authors
Beccari, Leonardo
Girgin, Mehmet
Turner, David A
Cossy, Anne-Catherine
Lutolf, Matthias P
Duboule, Denis
Arias, Alfonso Martinez
Publication Date
2018-10Journal Title
Nature
ISSN
0028-0836
Publisher
Springer Nature
Volume
562
Issue
7726
Pages
272-276
Language
eng
Type
Article
Metadata
Show full item recordCitation
Beccari, L., Moris, N., Girgin, M., Turner, D. A., Baillie-Johnson, P., Cossy, A., Lutolf, M. P., et al. (2018). Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids.. Nature, 562 (7726), 272-276. https://doi.org/10.1038/s41586-018-0578-0
Abstract
The emergence of multiple axes is an essential element in the establishment of the mammalian body plan. This process takes place shortly after implantation of the embryo within the uterus and relies on the activity of gene regulatory networks that coordinate transcription in space and time. Whereas genetic approaches have revealed important aspects of these processes1, a mechanistic understanding is hampered by the poor experimental accessibility of early post-implantation stages. Here we show that small aggregates of mouse embryonic stem cells (ESCs), when stimulated to undergo gastrulation-like events and elongation in vitro, can organize a post-occipital pattern of neural, mesodermal and endodermal derivatives that mimic embryonic spatial and temporal gene expression. The establishment of the three major body axes in these 'gastruloids'2,3 suggests that the mechanisms involved are interdependent. Specifically, gastruloids display the hallmarks of axial gene regulatory systems as exemplified by the implementation of collinear Hox transcriptional patterns along an extending antero-posterior axis. These results reveal an unanticipated self-organizing capacity of aggregated ESCs and suggest that gastruloids could be used as a complementary system to study early developmental events in the mammalian embryo.
Keywords
Animals, Body Patterning, Gastrula, Gene Expression Profiling, Gene Expression Regulation, Developmental, Genes, Homeobox, In Vitro Techniques, Mice, Mouse Embryonic Stem Cells, Organoids, Time Factors
Sponsorship
This work was supported by funds from the BBSRC (No. BB/M023370/1 and BB/P003184/1 to A.M.A.), an NC3Rs David Sainsbury Fellowship (No. NC/P001467/1 to D.A.T.), an Engineering and Physical Sciences Research Council (EPSRC) Studentship (to P.B.-J.), a Company of Biologists Development Travelling Fellowship (DEVTF-151210 to P.B.-J.), a Newnham College Constance Work Junior Research Fellowship (to N.M.), the École Polytechnique Fédérale de Lausanne (D.D. and M.P.L.), the University of Geneva (D.D.), the Swiss National Research Fund (No. 310030B_138662 to D.D.) and the European Research Council grants ERC MOFDH (No. 250316 to A.M.A.), RegulHox (No 588029 to D.D.) and STEMCHIP (No 311422 to M.P.L.).
Funder references
National Centre for the Replacement Refinement and Reduction of Animals in Research (NC/P001467/1)
Biotechnology and Biological Sciences Research Council (BB/P003184/1)
European Commission FP7 ERC Advanced Investigator Grants (AIG) (250316)
EPSRC (1359454)
Engineering and Physical Sciences Research Council (EP/K503009/1)
Engineering and Physical Sciences Research Council (EP/L504920/1)
Identifiers
External DOI: https://doi.org/10.1038/s41586-018-0578-0
This record's URL: https://www.repository.cam.ac.uk/handle/1810/285960
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk