Unveiling the Chemical Composition of Halide Perovskite Films Using Multivariate Statistical Analyses
Authors
Cacovich, Stefania
Matteocci, Fabio
Abdi Jalebi, M
Di Carlo, Aldo
Ducati, caterina
Divitini, G
Publication Date
2018-12-24Journal Title
ACS Applied Energy Materials
ISSN
2574-0962
Publisher
ACS Publications
Volume
1
Issue
12
Pages
7174-7181
Type
Article
This Version
AM
Metadata
Show full item recordCitation
Cacovich, S., Matteocci, F., Abdi Jalebi, M., Stranks, S., Di Carlo, A., Ducati, c., & Divitini, G. (2018). Unveiling the Chemical Composition of Halide Perovskite Films Using Multivariate Statistical Analyses. ACS Applied Energy Materials, 1 (12), 7174-7181. https://doi.org/10.1021/acsaem.8b01622
Abstract
The local chemical composition of halide perovskites is a crucial factor in determining their macroscopic properties and their stability. While the combination of scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX) is a powerful and widely used tool for accessing such information, electron-beam-induced damage and complex formulation of the films make this investigation challenging. Here we demonstrate how multivariate analysis, including statistical routines derived from “big data” research, such as principal component analysis (PCA), can be used to dramatically improve the signal recovery from fragile materials. We also show how a similar decomposition algorithm (non-negative matrix factorisation (NMF)) can unravel elemental composition at the nanoscale in perovskite films, highlighting the presence of segregated species and identifying the local stoichiometry at the nanoscale.
Keywords
big data, chemical composition, hybrid perovskite, multivariate analysis, nanoscale, STEM-EDX
Sponsorship
S.C., C.D. and G.D. acknowledge funding from ERC under grant number 25961976 PHOTO EM and financial support from the EU under grant number 77 312483 ESTEEM2. S.C., C.D. and G.D. also thank Dr. Francisco de la Peña and Dr. Pierre Burdet for very helpful discussions regarding Hyperspy and MVA. The CHOSE team gratefully acknowledges the European Union's Horizon 2020 Framework Program for funding Research and Innovation under Grant agreement no. 653296 (CHEOPS). M.A.-J. thanks Nava Technology Limited, Cambridge Materials Limited and EPSRC (grant number: EP/M005143/1) for their funding and technical support. S.D.S. acknowledges support from the Royal Society and Tata Group (UF150033) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 756962).
Funder references
European Research Council (259619)
Engineering and Physical Sciences Research Council (EP/M005143/1)
European Research Council (756962)
Identifiers
External DOI: https://doi.org/10.1021/acsaem.8b01622
This record's URL: https://www.repository.cam.ac.uk/handle/1810/288280
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk