Repository logo
 

Measurement of breast-tissue x-ray attenuation by spectral imaging: fresh and fixed normal and malignant tissue.

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Willsher, Paula 
Moa, Elin 
Dance, David R 
Young, Kenneth C 

Abstract

Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. In mammography, measurement of breast density, dose estimation, and differentiation between cysts and solid tumours are example applications requiring accurate data on tissue attenuation. Published attenuation data are, however, sparse and cover a relatively wide range. To supplement available data we have previously measured the attenuation of cyst fluid and solid lesions using photon-counting spectral mammography. The present study aims to measure the attenuation of normal adipose and glandular tissue, and to measure the effect of formalin fixation, a major uncertainty in published data. A total of 27 tumour specimens, seven fibro-glandular tissue specimens, and 15 adipose tissue specimens were included. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, from which x-ray attenuation as a function of energy can be derived. The spread in attenuation between samples was relatively large, partly because of natural variation. The variation of malignant and glandular tissue was similar, whereas that of adipose tissue was lower. Formalin fixation slightly altered the attenuation of malignant and glandular tissue, whereas the attenuation of adipose tissue was not significantly affected. The difference in attenuation between fresh tumour tissue and cyst fluid was smaller than has previously been measured for fixed tissue, but the difference was still significant and discrimination of these two tissue types is still possible. The difference between glandular and malignant tissue was close-to significant; it is reasonable to expect a significant difference with a larger set of samples. We believe that our studies have contributed to lower the overall uncertainty of breast tissue attenuation in the literature due to the relatively large sample sets, the novel measurement method, and by clarifying the difference between fresh and fixed tissue.

Description

Keywords

Adipose Tissue, Breast, Breast Density, Breast Neoplasms, Female, Humans, Mammography, X-Rays

Journal Title

Phys Med Biol

Conference Name

Journal ISSN

0031-9155
1361-6560

Volume Title

63

Publisher

IOP Publishing