Reshaping Silica Particles: Mesoporous Nanodiscs for Bimodal Delivery and Improved Cellular Uptake
View / Open Files
Authors
Giglio, Valentina
Varela-Aramburu, Silvia
Travaglini, Leana
Fiorini, Federica
Seeberger, Peter H
Maggini, L
De Cola, Luisa
Publication Date
2018-05-15Journal Title
Chemical Engineering Journal
ISSN
1385-8947
Publisher
Elsevier
Volume
340
Pages
148-154
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Giglio, V., Varela-Aramburu, S., Travaglini, L., Fiorini, F., Seeberger, P. H., Maggini, L., & De Cola, L. (2018). Reshaping Silica Particles: Mesoporous Nanodiscs for Bimodal Delivery and Improved Cellular Uptake. Chemical Engineering Journal, 340 148-154. https://doi.org/10.1016/j.cej.2018.01.059
Abstract
The role played by the shape of mesoporous silica nanoparticles has been investigated for intra- and extracellular delivery. Specifically, we have developed the bottom-up synthesis of flat disc-shaped mesoporous silica nanoparticles, the Nanodiscs (NDs). Due to their peculiar shape and large porous system, NDs present a higher cellular uptake than commonly investigated spherical mesoporous nanoparticles. Moreover, NDs are able to efficiently perform exhaustive delivery of their therapeutic cargo when loaded with the anticancer drug Doxorubicin and administered in vitro to cancerous HeLa cells. Thanks to their aspect ratio, NDs can also be readily assembled into well-organized monolayers to be employed in HeLa cells adhesion experiments upon preliminary functionalization with a specific targeting ligand. In these conditions NDs are able to deliver a hydrophobic dye to adhered cells via the highly accessible vertically aligned pores and their flat surface that ensures optimal cell contact. This initial investigation on the performance of NDs in both intra- and extracellular delivery activities suggests the great potential of these particles.
Keywords
Mesoporous silica nanoparticles, Shape control, Discoidal particles, Drug delivery, Monolayer
Sponsorship
This work was financially supported by the European Research Council (ERC) Advanced Grant “MAGIC” (grant N° 247365), the Marie Skłodowska-Curie fellowship (MSCA-IEF) “POP-SILICA” (grant N° 627788) and the SACS Project (grant N° 310651), the Foundation ARC through the project “Thera-HCC” (grant N° IHU201301187), the Région Alsace, and the Département du Bas-Rhin. LDC especially acknowledges AXA Research funds. PHS and SVA acknowledge the Max Planck Society for generous funding.
Identifiers
External DOI: https://doi.org/10.1016/j.cej.2018.01.059
This record's URL: https://www.repository.cam.ac.uk/handle/1810/291066
Rights
Licence:
http://creativecommons.org/licenses/by-nc-nd/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk