Repository logo
 

Regime transitions and energetics of sustained stratified shear flows

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Partridge, JL 
Linden, PF 

Abstract

jats:pWe describe the long-term dynamics of sustained stratified shear flows in the laboratory. The stratified inclined duct (SID) experiment sets up a two-layer exchange flow in an inclined duct connecting two reservoirs containing salt solutions of different densities. This flow is primarily characterised by two non-dimensional parameters: the tilt angle of the duct with respect to the horizontal, jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline1" />jats:tex-math𝜃𝜃</jats:tex-math></jats:alternatives></jats:inline-formula> (a few degrees at most), and the Reynolds number jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline2" />jats:tex-mathRe</jats:tex-math></jats:alternatives></jats:inline-formula>, an input parameter based on the density difference driving the flow. The flow can be sustained with constant forcing over arbitrarily long times and exhibits a wealth of dynamical behaviours representative of geophysically relevant sustained stratified shear flows. Varying jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline3" />jats:tex-math𝜃𝜃</jats:tex-math></jats:alternatives></jats:inline-formula> and jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline4" />jats:tex-mathRe</jats:tex-math></jats:alternatives></jats:inline-formula> leads to four qualitatively different regimes: laminar flow; mostly laminar flow with finite-amplitude, travelling Holmboe waves; spatio-temporally intermittent turbulence with substantial interfacial mixing; and sustained, vigorous interfacial turbulence (Meyer & Linden, jats:italicJ. Fluid Mech.</jats:italic>, vol. 753, 2014, pp. 242–253). We seek to explain the scaling of the transitions between flow regimes in the two-dimensional plane of input parameters jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline5" />jats:tex-math𝜃(𝜃,Re)</jats:tex-math></jats:alternatives></jats:inline-formula>. We improve upon previous studies of this problem by providing a firm physical basis and non-dimensional scaling laws that are mutually consistent and in good agreement with the empirical transition curves we inferred from 360 experiments spanning jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline6" />jats:tex-math𝜃𝜃∈[−1,6]</jats:tex-math></jats:alternatives></jats:inline-formula> and jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline7" />jats:tex-mathRe∈[300,5000]</jats:tex-math></jats:alternatives></jats:inline-formula>. To do so, we employ state-of-the-art simultaneous volumetric measurements of the density field and the three-component velocity field, and analyse these experimental data using time- and volume-averaged potential and kinetic energy budgets. We show that regime transitions are caused by an increase in the non-dimensional time- and volume-averaged kinetic energy dissipation within the duct, which scales with jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline8" />jats:tex-math𝜃𝜃Re</jats:tex-math></jats:alternatives></jats:inline-formula> at high enough angles. As the power input scaling with jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline9" />jats:tex-math𝜃𝜃Re</jats:tex-math></jats:alternatives></jats:inline-formula> is increased above zero, the two-dimensional, parallel-flow dissipation (power output) increases to close the budget through an increase in the magnitude of the exchange flow, incidentally triggering Holmboe waves above a certain threshold in interfacial shear. However, once the hydraulic limit of two-layer exchange flows is reached, two-dimensional dissipation plateaus and three-dimensional dissipation at small scales (turbulence) takes over, at first intermittently, and then steadily, in order to close the budget and follow the jats:inline-formulajats:alternatives<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="gif" xlink:type="simple" xlink:href="S0022112019004889_inline10" />jats:tex-math𝜃𝜃Re</jats:tex-math></jats:alternatives></jats:inline-formula> scaling. This general understanding of regime transitions and energetics in the SID experiment may serve as a basis for the study of more complex sustained stratified shear flows found in the natural environment.</jats:p>

Description

Keywords

stratified flows, stratified turbulence, turbulent transition

Journal Title

JOURNAL OF FLUID MECHANICS

Conference Name

Journal ISSN

0022-1120
1469-7645

Volume Title

875

Publisher

Cambridge University Press (CUP)

Rights

All rights reserved
Sponsorship
EPSRC (1480426)
European Research Council (742480)
Engineering and Physical Sciences Research Council (EP/K034529/1)
EPSRC Doctoral Prize EPSRC Programme Grant EP/K034529/1 ERC Horizon 2020 Grant No 742480