Repository logo
 

Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome.

Published version
Peer-reviewed

Type

Article

Change log

Authors

McMacken, Grace M 
Spendiff, Sally 
Whittaker, Roger G 
O'Connor, Emily 
Howarth, Rachel M 

Abstract

The β-adrenergic agonists salbutamol and ephedrine have proven to be effective as therapies for human disorders of the neuromuscular junction, in particular many subsets of congenital myasthenic syndromes. However, the mechanisms underlying this clinical benefit are unknown and improved understanding of the effect of adrenergic signalling on the neuromuscular junction is essential to facilitate the development of more targeted therapies. Here, we investigated the effect of salbutamol treatment on the neuromuscular junction in the ColQ deficient mouse, a model of end-plate acetylcholinesterase deficiency. ColQ-/- mice received 7 weeks of daily salbutamol injection, and the effect on muscle strength and neuromuscular junction morphology was analysed. We show that salbutamol leads to a gradual improvement in muscle strength in ColQ-/- mice. In addition, the neuromuscular junctions of salbutamol treated mice showed significant improvements in several postsynaptic morphological defects, including increased synaptic area, acetylcholine receptor area and density, and extent of postjunctional folds. These changes occurred without alterations in skeletal muscle fibre size or type. These findings suggest that β-adrenergic agonists lead to functional benefit in the ColQ-/- mouse and to long-term structural changes at the neuromuscular junction. These effects are primarily at the postsynaptic membrane and may lead to enhanced neuromuscular transmission.

Description

Keywords

Acetylcholinesterase, Adrenergic beta-Agonists, Agrin, Albuterol, Animals, Collagen, Disease Models, Animal, Dystroglycans, Mice, Mice, Knockout, Muscle Fibers, Skeletal, Muscle Proteins, Muscle Weakness, Myasthenic Syndromes, Congenital, Neuromuscular Junction, Receptors, Cholinergic, Signal Transduction, Synaptic Transmission

Journal Title

Hum Mol Genet

Conference Name

Journal ISSN

0964-6906
1460-2083

Volume Title

28

Publisher

Oxford University Press (OUP)
Sponsorship
Wellcome Trust (109915_A_15_Z)
Medical Research Council (MR/N025431/2)