Repository logo
 

A macroscale finite element approach for simulating the bending behaviour of biaxial fabrics

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

A macroscale finite element (FE) model was developed to simulate the forming behaviour of biaxial fabrics, incorporating the effects of bending stiffness to predict fabric wrinkling. The dependency of the bending stiffness on the fibre orientation was addressed by extending a non-orthogonal constitutive framework previously developed for biaxial fabric materials. The nonlinear bending behaviour of a biaxial non-crimp fabric (NCF) with pillar stitches was characterised by a revised cantilever test using structured light scanning to measure specimen curvature, providing input data for the material model. Simulations were performed to replicate the bias-extension behaviour of the NCF material, showing good agreement with experimental data. Wrinkles were observed within the central area of the specimen at low extension, which consequently affect the uniformity of the shear angle distribution in the region where pure shear is expected.

Description

Journal Title

Composites Science and Technology

Conference Name

Journal ISSN

0266-3538
1879-1050

Volume Title

191

Publisher

Elsevier

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International
Sponsorship
Engineering and Physical Sciences Research Council (EP/P006701/1)
EPSRC (1946941)
EPRSC Doctoral Training Partnership award