Repository logo
 

Rubisco and carbon-concentrating mechanism co-evolution across chlorophyte and streptophyte green algae.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

Green algae expressing a carbon-concentrating mechanism (CCM) are usually associated with a Rubisco-containing micro-compartment, the pyrenoid. A link between the small subunit (SSU) of Rubisco and pyrenoid formation in Chlamydomonas reinhardtii has previously suggested that specific RbcS residues could explain pyrenoid occurrence in green algae. A phylogeny of RbcS was used to compare the protein sequence and CCM distribution across the green algae and positive selection in RbcS was estimated. For six streptophyte algae, Rubisco catalytic properties, affinity for CO2 uptake (K0.5 ), carbon isotope discrimination (δ13 C) and pyrenoid morphology were compared. The length of the βA-βB loop in RbcS provided a phylogenetic marker discriminating chlorophyte from streptophyte green algae. Rubisco kinetic properties in streptophyte algae have responded to the extent of inducible CCM activity, as indicated by changes in inorganic carbon uptake affinity, δ13 C and pyrenoid ultrastructure between high and low CO2 conditions for growth. We conclude that the Rubisco catalytic properties found in streptophyte algae have coevolved and reflect the strength of any CCM or degree of pyrenoid leakiness, and limitations to inorganic carbon in the aquatic habitat, whereas Rubisco in extant land plants reflects more recent selective pressures associated with improved diffusive supply of the terrestrial environment.

Description

Journal Title

New Phytol

Conference Name

Journal ISSN

0028-646X
1469-8137

Volume Title

227

Publisher

Wiley

Rights and licensing

Except where otherwised noted, this item's license is described as All rights reserved
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/I024518/1)
Biotechnology and Biological Sciences Research Council (BB/M007693/1)
Natural Environment Research Council (NE/M001946/1)
NERC (NE/L002507/1)
NE/L002507/1, BB/M007693/1, BB/I024518/1 (NERC, BBSRC and NSF). A Cambridge Trust Vice Chancellor’s award and Lucy Cavendish College, Cambridge, for supporting the PhD scholarship of MMMG. DJO and ECS acknowledge support from (BBSRC; grant number BB/I024488/1).