Repository logo
 

Diffusion quantum Monte Carlo and GW study of the electronic properties of monolayer and bulk hexagonal boron nitride

Published version
Peer-reviewed

Change log

Authors

Hunt, RJ 
Monserrat, B 
Zólyomi, V 
Drummond, ND 

Abstract

© 2020 American Physical Society. We report diffusion quantum Monte Carlo (DMC) and many-body GW calculations of the electronic band gaps of monolayer and bulk hexagonal boron nitride (hBN). We find the monolayer band gap to be indirect. GW predicts much smaller quasiparticle gaps at both the single-shot G0W0 and the partially self-consistent GW0 levels. In contrast, solving the Bethe-Salpeter equation on top of the GW0 calculation yields an exciton binding energy for the direct exciton at the K point in close agreement with the DMC value. Vibrational renormalization of the electronic band gap is found to be significant in both the monolayer and the bulk. Taking vibrational effects into account, DMC overestimates the band gap of bulk hBN, while GW theory underestimates it.

Description

Keywords

51 Physical Sciences, 5104 Condensed Matter Physics

Journal Title

Physical Review B

Conference Name

Journal ISSN

2469-9950
2469-9969

Volume Title

101

Publisher

American Physical Society (APS)

Rights

All rights reserved