Repository logo
 

Ion Migration‐Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar Perovskite Solar Cells

Published version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

The operation of halide perovskite optoelectronic devices, including solar cells and LEDs, is strongly influenced by the mobility of ions comprising the crystal structure. This peculiarity is particularly true when considering the long‐term stability of devices. A detailed understanding of the ion migration‐driven degradation pathways is critical to design effective stabilization strategies. Nonetheless, despite substantial research in this first decade of perovskite photovoltaics, the long‐term effects of ion migration remain elusive due to the complex chemistry of lead halide perovskites. By linking materials chemistry to device optoelectronics, this study highlights that electrical bias‐induced perovskite amorphization and phase segregation is a crucial degradation mechanism in planar mixed halide perovskite solar cells. Depending on the biasing potential and the injected charge, halide segregation occurs, forming crystalline iodide‐rich domains, which govern light emission and participate in light absorption and photocurrent generation. Additionally, the loss of crystallinity limits charge collection efficiency and eventually degrades the device performance.

Description

Journal Title

Advanced Energy Materials

Conference Name

Journal ISSN

1614-6832
1614-6840

Volume Title

Publisher

Wiley

Rights and licensing

Except where otherwised noted, this item's license is described as Attribution 4.0 International
Sponsorship
European Commission Horizon 2020 (H2020) Research Infrastructures (RI) (823717)
Engineering and Physical Sciences Research Council (EP/L01551X/1)