Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons
Publication Date
2020-07-13Journal Title
eLife
Publisher
eLife Sciences Publications, Ltd
Volume
9
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Mukherjee, A., Brooks, P. S., Bernard, F., Guichet, A., & Conduit, P. T. (2020). Microtubules originate asymmetrically at the somatic golgi and are guided via Kinesin2 to maintain polarity within neurons. eLife, 9 https://doi.org/10.7554/elife.58943
Abstract
Neurons contain polarised microtubule arrays essential for neuronal function. How microtubule nucleation and polarity are regulated within neurons remains unclear. We show that γ-tubulin localises asymmetrically to the somatic Golgi within Drosophila neurons. Microtubules originate from the Golgi with an initial growth preference towards the axon. Their growing plus ends also turn towards and into the axon, adding to the plus-end-out microtubule pool. Any plus ends that reach a dendrite, however, do not readily enter, maintaining minus-end-out polarity. Both turning towards the axon and exclusion from dendrites depend on Kinesin-2, a plus-end-associated motor that guides growing plus ends along adjacent microtubules. We propose that Kinesin-2 engages with a polarised microtubule network within the soma to guide growing microtubules towards the axon; while at dendrite entry sites engagement with microtubules of opposite polarity generates a backward stalling force that prevents entry into dendrites and thus maintains minus-end-out polarity within proximal dendrites.
Keywords
Research Article, Cell Biology, Neuroscience, microtubules, neurons, polarity, g-turc, Golgi, Kinesin-2, D. melanogaster
Sponsorship
Wellcome (105653/Z/14/Z)
Isaac Newton Trust (18.23(p))
Association pour la Recherche sur le Cancer (PJA 20181208148)
Identifiers
58943
External DOI: https://doi.org/10.7554/elife.58943
This record's URL: https://www.repository.cam.ac.uk/handle/1810/308667
Rights
Attribution 4.0 International (CC BY 4.0)
Licence URL: https://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.