Repository logo
 

Fine-scale computations for adaptive processing in the human brain

Published version
Peer-reviewed

Change log

Authors

Kemper, Valentin G 
Goncalves, Nuno Reis 
Jia, Ke 
Karlaftis, Vasilis M  ORCID logo  https://orcid.org/0000-0003-1285-1593

Abstract

Adapting to the environment statistics by reducing brain responses to repetitive sensory information is key for efficient information processing. Yet, the fine-scale computations that support this adaptive processing in the human brain remain largely unknown. Here, we capitalise on the sub-millimetre resolution of ultra-high field imaging to examine functional magnetic resonance imaging signals across cortical depth and discern competing hypotheses about the brain mechanisms (feedforward vs. feedback) that mediate adaptive processing. We demonstrate layer-specific suppressive processing within visual cortex, as indicated by stronger BOLD decrease in superficial and middle than deeper layers for gratings that were repeatedly presented at the same orientation. Further, we show altered functional connectivity for adaptation: enhanced feedforward connectivity from V1 to higher visual areas, short-range feedback connectivity between V1 and V2, and long-range feedback occipito-parietal connectivity. Our findings provide evidence for a circuit of local recurrent and feedback interactions that mediate rapid brain plasticity for adaptive information processing.

Description

Keywords

Research Article, Neuroscience, visual cortex, adaptation, fMRI, layer, laminar, functional connectivity, Human

Journal Title

eLife

Conference Name

Journal ISSN

2050-084X

Volume Title

9

Publisher

eLife Sciences Publications, Ltd
Sponsorship
Biotechnology and Biological Sciences Research Council (H012508)
Biotechnology and Biological Sciences Research Council (BB/P021255/1)
Wellcome Trust (205067/Z/16/Z)